![]() Thin film structure that may be used with an adhesion layer
专利摘要:
A conductive structure, including an adhesion layer and a conductor in contact with the adhesion layer and having a thickness of less than six hundred Angstroms. The present invention may be used to form a capacitor, including an adhesion layer, a first conductor in contact with the adhesion layer and having a thickness of less than six hundred Angstroms, a second conductor, and a dielectric between the first and second conductors. The present invention is also directed towards structures wherein iridium or rhodium may be used in place of the combination of the adhesion layer and conductor. 公开号:US20010001589A1 申请号:US09/259,209 申请日:1999-03-01 公开日:2001-05-24 发明作者:Eugene P. Marsh 申请人:Micron Technology Inc; IPC主号:H01L28-75
专利说明:
[0001] Not Applicable. [0001] STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT [0002] Not Applicable. [0002] BACKGROUND OF THE INVENTION [0003] 1. Field of the Invention [0003] [0004] The present invention is directed generally to a structure having thin films that does not exhibit spotting and non-wetting characteristics and, more particularly, to a structure having thin films that may include an adhesion layer. [0004] [0005] 2. Description of the Background [0005] [0006] Films used in integrated circuits are becoming thinner as minimum feature sizes decrease and as the competitive nature of integrated circuit fabrication forces manufactures to produce smaller parts (i.e. die) in order to produce smaller and less expensive integrated circuits. [0006] [0007] A result of decreasing film thickness is that some materials will not form a conformal film below certain thicknesses. Instead, those materials exhibit “spotting” or “non-wetting” characteristics whereby the material forms “islands” separated by gaps where the material will not form. One example of such a material is platinum, which exhibits spotting when formed on silicon at a thickness less than about six hundred (600) Angstroms and then annealed to 700° C. [0007] [0008] Platinum, as well as other materials, is important when forming integrated circuits because it exhibits desirable characteristics during fabrication steps. For example, platinum does not readily form an oxide during annealing in oxygen. [0008] [0009] Therefore, the need exists for a structure having thin films that does not exhibit spotting or non-wetting characteristics. [0009] BRIEF SUMMARY OF THE INVENTION [0010] The present invention is directed to a conductive structure including an adhesion layer and a conductor in contact with the adhesion layer and having a thickness of less than six hundred Angstroms. The present invention may be used to form devices, such as capacitors. A capacitor constructed according to the present invention includes an adhesion layer, a conductor in contact with the adhesion layer and having a thickness of less than six hundred Angstroms, a second conductor, and a dielectric between the first and second conductors. [0010] [0011] The present invention is also directed towards structures wherein iridium or rhodium may be used in place of the combination of the adhesion layer and conductor. [0011] [0012] The present invention solves problems experienced with the prior art because it allows for the formation of thin films, such as platinum, without wetting effects. Those and other advantages and benefits of the present invention will become apparent from the description of the preferred embodiments hereinbelow. [0012] BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING [0013] For the present invention to be clearly understood and readily practiced, the present invention will be described in conjunction with the following figures, wherein: [0013] [0014] FIG. 1 is a cross-sectional view of a structure constructed according to the teachings of the present invention; [0014] [0015] FIG. 2 is a cross-sectional view of a capacitor in an early stage of fabrication according to the teachings of the present invention; [0015] [0016] FIG. 3 is a cross-sectional view of the capacitor of FIG. 2 after the adhesion layer and conductor are removed from the top surface of the substrate; [0016] [0017] FIG. 4 is a cross-sectional view of the capacitor of FIG. 3 after a portion of the substrate is removed from around the adhesion layer and conductor; [0017] [0018] FIG. 5 is a cross-sectional view of the capacitor of FIG. 4 after the exposed portion of the adhesion layer is removed; [0018] [0019] FIG. 6 is a cross-sectional view of the capacitor of FIG. 5 after a dielectric is formed on the conductor; [0019] [0020] FIG. 7 is a cross-sectional view of the capacitor of FIG. 6 after a second conductor is formed on the dielectric; [0020] [0021] FIG. 8 is a cross-sectional view of a capacitor having a dielectric and second conductor formed only within the conductor and wherein the adhesion layer is not removed; [0021] [0022] FIG. 9 is a cross-sectional view of the capacitor of FIG. 8 after an additional layer is formed over the capacitor; [0022] [0023] FIG. 10 is a cross-sectional view of a post capacitor in an early stage of fabrication according to the teachings of the present invention; [0023] [0024] FIG. 11 is a cross-sectional view of the capacitor of FIG. 10 after an adhesion layer and a conductor are formed on the post; [0024] [0025] FIG. 12 is a cross-sectional view of the capacitor of FIG. 11 after a dielectric layer and a second conductor are formed on the adhesion layer and the conductor; [0025] [0026] FIG. 13 is a cross-sectional view of the capacitor of FIG. 12 after portions of the adhesion layer, conductor, dielectric layer, and second conductor are removed; [0026] [0027] FIG. 14 is a cross-sectional view of the capacitor of FIG. 13 after an additional layer is formed over the capacitor; and [0027] [0028] FIG. 15 is a block diagram of a system including devices constructed according to the teachings of the present invention. [0028] DETAILED DESCRIPTION OF THE INVENTION [0029] It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize that other elements may be desirable and/or required in order to implement the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein. [0029] [0030] Advantages of the present invention may be realized using a number of structures and technologies, such as doped silicon substrate, silicon-on-insulator, silicon-on-sapphire, and thin film transistor. The term substrate, as used herein, shall mean one or more layers or structures which may include active or operable portions of a semiconductor device formed on or in the substrate. A substrate is often, but not always, the lowest layer of material. [0030] [0031] FIG. 1 is a cross-sectional view of a conductive structure [0031] 10 constructed in accordance with the present invention. The structure 10 includes an adhesion layer 12 and a conductor 14 in contact with the adhesion layer 12, both of which are formed on a substrate 16. As discussed hereinbelow, the structure 10 may take many forms such as, for example, electrical contacts and capacitors. The illustrated embodiment may be used, for example, as an electrical contact in an integrated circuit, such as may be used with an interconnect or with a die bond pad. [0032] The adhesion layer [0032] 12 adheres to both the substrate 16 and the conductor 14, and has desirable properties when exposed to subsequent processing steps such as annealing. The adhesion layer 12 may be, for example, titanium, titanium nitride, tungsten carbide, tantalum nitride, tungsten nitride, noble metals, such as rhodium, iridium, osmium, and palladium; noble metal oxides, such as ruthenium oxide, rhodium oxide, iridium oxide, and osmium oxide; and silicides of those materials. Those materials adhere well to typical substrate materials, adhere well to typical conductors, and are generally unaffected by processing steps such as annealing. [0033] The adhesion layer [0033] 12 may be formed by, for example, chemical vapor deposition (“CVD”). For an embodiment where the adhesion layer 12 is titanium nitride, the CVD process may be accomplished with a pressure of 0.5 torr, a deposition temperature of about 560° C., a flow rate of about 25 sccm of NH3, a flow rate of about 25 sccm of nitrogen, and a flow rate of about 50 sccm of a carrier gas. Alternatively, the adhesion layer 12 may be formed, for example, by physical vapor deposition, such as sputter deposition, co-sputter deposition, evaporation deposition, and co-evaporation deposition. Once deposited, the adhesion layer 12 may be patterned as desired by, for example, conventional patterning techniques. Examples of conventional patterning techniques include lithography, etching (chemical or mechanical), and chemical mechanical polishing (“CMP”). [0034] The conductor [0034] 14 may be almost any conductor, including noble metals and noble metal oxides such as, for example, platinum, ruthenium, iridium, rhodium, palladium, osmium, oxides of those metals, and silicides of those metals. The conductor may have a thickness of less than six hundred (600) Angstroms. The conductor 14 will not exhibit “spotting” or “non-wetting” characteristics, even with a thickness of less than six hundred (600) Angstroms, because the adhesion layer 12, particularly the above-identified adhesion materials, causes the conductor 14 to form a conformal layer on the adhesion layer 12. [0035] The conductor [0035] 14 may be formed, for example, by CVD and sputtering. For an embodiment where the conductor 14 is platinum and formed by CVD, the flow rate of the carrier gas may be about 10 to 5000 sccm, the deposition pressure may be about 0.4 to 10 torr, and the deposition temperature about 100° C. to 500° C. The CVD process may be performed without plasma enhancement, and diluent gas, such as nitrogen or argon, may be provided into the reaction chamber at a rate of up to about 500 sccm. [0036] Once formed, the structure [0036] 10 may be annealed to aid causing the conductor 14 to form in a conformal layer on the adhesion layer 12. The annealing may be performed at a pressure of about 0.1 millitorr to about 5 atmospheres and at a temperature of about 650° C. or greater, but at a temperature less than the melting point of the substrate 16. The anneal may be performed for a time period of about 30 to 300 seconds. Further, the anneal may be performed while the structure 10 is present in a gas environment, such as in an atmosphere of oxygen, ozone, argon, nitrogen, helium, and a combination thereof. Once annealed, the conductor 14 forms directly on the patterned adhesion layer 12. [0037] The anneal may be, for example, a rapid thermal oxidation (RTO) anneal or a rapid thermal nitridation (RTN) anneal. For a RTO anneal, the temperature may be 700-800° C. for a time period of approximately 30-60 seconds at 1 atm oxygen. For a RTN anneal, the temperature may be 700-800° C. for a time period of 30-60 seconds at 1 atm nitrogen. [0037] [0038] Conductor material which is deposited on the substrate [0038] 16 and not on the adhesion layer 12 during deposition of the conductor 14 may be removed by exposing the structure 10 in a rinsing composition for a sufficient time period to remove the conductor material. Examples of suitable rinsing compositions include water, aqua regia, hydrofluoric acid, hydrophilic acid, hydrogen peroxide, and a combination thereof. The rinsing may be performed for a time period of about 5 minutes or less in a conventional ultrasonic bath. [0039] The substrate [0039] 16 may be any of many materials, such as, for example, borophosphosilicate glass (“BPSG”), silicon dioxide, gallium arsenide, and Al2O3, and may be formed, for example, by CVD. [0040] It has been found that iridium and rhodium offer superior characteristics that resist spotting. As a result, iridium or rhodium may be used to form a thin film less than six hundred Angstroms thick, without the spotting problems often associated with such thin films. Iridium or rhodium may be used in place of the combination of the adhesion layer [0040] 12 and the conductor 14 described herein. For example, and with reference to FIG. 1, iridium or rhodium may be used to form a conductive adhesion layer 12 that may be used without the conductor 14. Alternatively, iridium or rhodium may be used to form a conductor 14 that may be used without the adhesion layer 12. [0041] FIG. 2 is a cross-sectional view of one embodiment of the structure [0041] 10 in an early stage of being fabricated into a capacitor. The adhesion layer 12 and conductor 14 are formed in an opening 20 in the substrate 16. The opening 20 may be formed, for example, by selectively masking the substrate 16 so that only the portion of the substrate 16 where the opening 20 is to be formed is exposed, by selectively and anisotropically etching the substrate 16 to form the opening 20, and then removing the mask. A conductive interconnect 22 may also be formed under the adhesion layer 12 to electrically connect the adhesion layer 12 and conductor 14 to another part of the device in which the structure 10 is formed. The interconnect 22 may be formed in a manner similar to that used to form the opening 20. The interconnect 22 may also include a contact 24 that has a lower resistance than the interconnect 22. In the case of the capacitor in the illustrated embodiment, the interconnect 22 and contact 24 may provide current to and from the conductor 14, which will form a plate and store charge in the capacitor. The interconnect 22 may be, for example, doped polysilicon, and the contact 24 may be, for example, selected from a group including TiN, Rhodium, Ruthenium, and Iridium. [0042] FIG. 3 is a cross-sectional view of the structure [0042] 10 after the adhesion layer 12 and the conductor 14 have been removed from the top surface of the substrate 16. The removal may be performed by, for example, either a wet etch or a dry etch. In those examples, the opening 20 may be filled with a protective material, such as photoresist, to prevent the adhesion layer 12 and the conductor 14 from being etched. After the etch is completed, the protective material may be removed from the opening 20. Because some materials, such as platinum, are difficult to etch, a mechanical abrasion step, such as CMP, may be used to remove the adhesion layer 12 and conductor 14 from the top surface of the substrate 16. In that example, a protective material may be used to fill the opening 20 to prevent materials removed by the CMP from falling into the opening 20. [0043] FIG. 4 is a cross-sectional view of the structure [0043] 10 after a portion of the substrate 16 has been removed to expose vertical portions of the adhesion layer 12 and of the conductor 14. The substrate 16 may be removed by, for example, an etch that is selective to the substrate 16 but which does not etch the adhesion layer 12 and the conductor 14. [0044] FIG. 5 is a cross-sectional view of the structure [0044] 10 after the exposed portion of the adhesion layer 12 is removed. The adhesion layer 12 may be removed with, for example, either a wet or a dry etch. [0045] FIG. 6 is a cross-sectional view of the structure [0045] 10 after a dielectric 30 is formed on the conductor 14. The dielectric 30 is shown being formed on both sides of the conductor 14, although as described hereinbelow, the dielectric 30 may be formed on only one side of the conductor 14. The dielectric 30 may be, for example, selected from a group including Ta2O5, barium strontium titanate (“BST”), strontium titanate (“ST”), Nb2O5, Y2O3, Ba(ZrTi)O3, TiO2, ZrO2, and SrTiO3. The dielectric 30 may be formed, for example, by forming a layer of the dielectric 30 on the entire surface, and then selectively removing the dielectric 30 so that it remains only where desired. For example, the dielectric 30 may deposited over the entire surface by either sputtering or CVD, the dielectric 30 masked on both sides of the conductor 14 with photoresist, and the exposed dielectric removed with a selective etch. [0046] FIG. 7 is a cross-sectional view of the structure [0046] 10 after a second conductor 32 is formed over the dielectric 30, thereby forming a capacitor. The second conductor 32 may be formed from the same or similar materials as the conductor 14 and in a manner similar to that used to form the dielectric 30. A greater variety of materials may be used for the second conductor 32 because the second conductor 32 may not be subject to extreme processing steps. For example, the second conductor 32 may be formed after the last high temperature processing step is completed. Examples of materials that may be used to form the second conductor 32 include platinum, ruthenium, iridium, rhodium, titanium nitride, tantalum nitride, tungsten nitride, aluminum, RhO2, RuO2, and Pd. [0047] Many variations of the present invention are possible. For example, the structure may be formed without removing the adhesion layer [0047] 12. Also, the dielectric 30 and second conductor 32 may be formed on only one side of the conductor 14. Some embodiments will be described hereinbelow. [0048] FIG. 8 is a cross-sectional view of an embodiment of the structure [0048] 10 wherein the dielectric 30 and the second conductor 32 have been formed within the conductor 14 and the adhesion layer 12 is not removed. The adhesion layer's 12 effectiveness as an oxygen barrier is one factor that may be used to determine whether to remove the adhesion layer 12. If the adhesion layer 12 is a good oxygen barrier, Rh/RhO2 is one such example, it may be left on the conductor 14, as illustrated in FIG. 8. [0049] FIG. 9 is a cross-sectional view of the structure [0049] 10 after an additional layer 40 is formed. The additional layer 40 may be used to separate the structure 10 from whatever may be formed above the structure 10. The additional layer 40 may be formed, for example, by a CVD process and from the same materials used to form the substrate 16. The additional layer 40 may be planarized, such as by CMP, and an interconnect 42 may be formed in the additional layer 40 to connect the second conductor 32 to another portion of the device in which the capacitor 10 is formed. As with the interconnect 22, the interconnect 42 may include a contact 44. [0050] FIG. 10 is a cross-sectional view of a post [0050] 46 that will be used to form a post capacitor in accordance with the present invention. The post 46 may be formed, for example, by filling an opening in a temporary layer and then removing the temporary layer to leave the post 46. The post 46 may be formed from many materials such as, for example, polysilicon. [0051] FIG. 11 is a cross-sectional view of the structure [0051] 10 after the adhesion layer 12 and the conductor 14 are formed over the post 46. The adhesion layer 12 is formed before the conductor 14, and both may be formed in a manner such as described hereinabove. [0052] FIG. 12 is a cross-sectional view of the structure [0052] 10 after the dielectric 30 and the second conductor 32 are formed over the post 46. The dielectric 30 is formed before the second conductor 32, and both may be formed in a manner such as described hereinabove. [0053] FIG. 13 is a cross-sectional view of the structure [0053] 10 after the adhesion layer 12, the conductor 14, the dielectric 30, and the second conductor 32 are partially removed to leave a capacitor formed on the post 46. The removal may be performed such as, for example, by forming a mask over the portion to remain, etching the exposed portion of the adhesion layer 12, the conductor 14, the dielectric 30, and the second conductor 32, and removing the mask to leave the capacitor. The mask may be, for example, photoresist. [0054] FIG. 14 is a cross-sectional view of the structure [0054] 10 after an additional layer 40 has been formed over the capacitor. The additional layer 40 may be planarized, such as by CMP, and an interconnect 42 may be formed in the additional layer 40 to connect the second conductor 32 to another portion of the device in which the capacitor 10 is formed. The interconnect 42 may also include a contact 44. An interconnect 22 may also be formed to connect the adhesion layer 12 and the conductor 14 to another portion of the device in which the capacitor is formed. The interconnect 22 to the adhesion layer 12 is formed prior to the formation of the adhesion layer 12, the conductor 14, the dielectric 30, and the second conductor 32, in a manner similar to the interconnect 22 illustrated in FIG. 2. [0055] FIG. 15 is a high level block diagram illustrating a system [0055] 50 including a first device 52, a bus 54, and a second device 56. The system 50 may be, for example, a memory system or a computer system. The first device 52 may be a processor, and the second device 56 may be a memory. The first device 52 and the second device 56 may communicate via the bus 54. The first and second devices 52, 56 may include structures 10, such as capacitors and contacts, constructed according to the teaching of the present invention. [0056] The present invention also includes a method of forming structures and devices, such as capacitors. The method includes forming an adhesion layer [0056] 12 and forming a conductor 14 having a thickness of less than six hundred Angstroms on the adhesion layer 12. The adhesion layer 12 and the conductor 14 may be formed as described hereinbefore. When forming a capacitor, the method includes forming an adhesion layer 12, forming a conductor 14 having a thickness of less than six hundred Angstroms on the adhesion layer 12, forming a second conductor 32, and forming a dielectric 30 between the conductor 14 and the second conductor 32. The method may be used to form different types of capacitors, including post capacitors. When forming a post capacitor, the method may include forming the adhesion layer 12 on a post 46. Alternatively, the method may include forming the adhesion layer 12 in an opening 20. The adhesion layer 12 may have a first side and a second side, and the method may includes forming the conductor 14 on one of the first and second sides of the adhesion layer 12. Alternatively, the method may include forming the conductor 14 on both the first side of the adhesion layer 12 and on the second side of the adhesion layer 12, thereby increasing the capacitance of the capacitor. [0057] An example of a method of forming a post capacitor according to the present invention includes providing a substrate [0057] 16, forming a post 46 on the substrate 16, forming an adhesion layer 12 on the post 46, forming a conductor 14 having a thickness of less than six hundred Angstroms on the adhesion layer 12, forming a second conductor 32, and forming a dielectric 30 between the conductor 14 and the second conductor 32. [0058] An example of a method of forming a capacitor in an opening [0058] 20 includes providing a substrate 16, forming an opening 20 in the substrate 16, forming an adhesion layer 12 in the opening 20, forming a conductor 14 having a thickness of less than six hundred Angstroms on the adhesion layer 12, forming a second conductor 32, and forming a dielectric 30 between the conductor 14 and the second conductor 32. [0059] Those of ordinary skill in the art will recognize that many modifications and variations of the present invention may be implemented. For example, one of the interconnects [0059] 22, 42 may be omitted and the corresponding conductor may be left to “float”. In addition, iridium or rhodium may be used in place of the combination of adhesion layer 12 and conductor 14. The foregoing description and the following claims are intended to cover all such modifications and variations.
权利要求:
Claims (50) [1" id="US-20010001589-A1-CLM-00001] 1. A conductive structure, comprising: an adhesion layer; and a conductor in contact with said adhesion layer and having a thickness of less than six hundred Angstroms. [2" id="US-20010001589-A1-CLM-00002] 2. The structure of claim 1 , wherein said adhesion layer is selected from a group consisting of titanium, titanium alloys, noble metals, noble metal oxides, and silicides of titanium, titanium alloys, and noble metal. [3" id="US-20010001589-A1-CLM-00003] 3. The structure of claim 1 , wherein said adhesion layer is selected from a group consisting of titanium, titanium nitride, tungsten carbide, tantalum nitride, tungsten nitride, rhodium, iridium, osmium, palladium, ruthenium oxide, rhodium oxide, iridium oxide, osmium oxide, and suicides of titanium, titanium nitride, tungsten carbide, tantalum nitride, tungsten nitride, rhodium, iridium, osmium, and palladium. [4" id="US-20010001589-A1-CLM-00004] 4. The structure of claim 1 , wherein said conductor is selected from a group consisting of noble metals, noble metal oxides, and silicides of noble metals. [5" id="US-20010001589-A1-CLM-00005] 5. The structure of claim 4 , wherein said conductor is selected from a group consisting of platinum, ruthenium, iridium, rhodium, palladium, and osmium; oxides of platinum, ruthenium, iridium, rhodium, palladium, and osmium; and silicides of platinum, ruthenium, iridium, rhodium, palladium, and osmium. [6" id="US-20010001589-A1-CLM-00006] 6. The structure of claim 1 , wherein said adhesion layer is in contact with a substrate. [7" id="US-20010001589-A1-CLM-00007] 7. The structure of claim 1 , wherein said adhesion layer is in contact with a material including silicon. [8" id="US-20010001589-A1-CLM-00008] 8. The structure of claim 7 , wherein said material including silicon is selected from a group consisting of silicon dioxide and borophosphosilicate glass. [9" id="US-20010001589-A1-CLM-00009] 9. The structure of claim 1 , wherein the structure is part of a capacitor. [10" id="US-20010001589-A1-CLM-00010] 10. The structure of claim 1 , further comprising: a second conductor; and a dielectric between said conductor and said second conductor. [11" id="US-20010001589-A1-CLM-00011] 11. A conductive structure, comprising: an adhesion layer; and a layer of platinum in contact with said adhesion layer and having a thickness of less than six hundred Angstroms. [12" id="US-20010001589-A1-CLM-00012] 12. A capacitor, comprising: an adhesion layer; a first conductor in contact with said adhesion layer and having a thickness of less than six hundred Angstroms; a second conductor; and a dielectric between said first and second conductors. [13" id="US-20010001589-A1-CLM-00013] 13. The capacitor of claim 12 , wherein said adhesion layer is selected from a group consisting of titanium, titanium alloys, noble metals, noble metal oxides, and silicides of titanium, titanium alloys, noble metals, and noble metal oxides. [14" id="US-20010001589-A1-CLM-00014] 14. The capacitor of claim 12 , wherein said adhesion layer is selected from a group consisting of titanium, titanium nitride, tungsten carbide, tantalum nitride, tungsten nitride, rhodium, iridium, osmium, palladium, ruthenium oxide, rhodium oxide, iridium oxide, osmium oxide, and silicides of titanium, titanium nitride, tungsten carbide, tantalum nitride, tungsten nitride, rhodium, iridium, osmium, and palladium. [15" id="US-20010001589-A1-CLM-00015] 15. The capacitor of claim 12 , wherein said first conductor is selected from a group consisting of noble metals, noble metal oxides, and silicides of noble metals. [16" id="US-20010001589-A1-CLM-00016] 16. The capacitor of claim 15 , wherein said first conductor is selected from a group consisting of platinum, ruthenium, iridium, rhodium, palladium, and osmium; oxides of platinum, ruthenium, iridium, rhodium, palladium, and osmium; and silicides of platinum, ruthenium, iridium, rhodium, palladium, and osmium. [17" id="US-20010001589-A1-CLM-00017] 17. The capacitor of claim 12 , wherein said second conductor is selected from a group consisting of aluminum, titanium nitride, tantalum nitride, tungsten nitride, platinum, ruthenium, iridium, rhodium, palladium, and osmium; oxides of platinum, ruthenium, iridium, rhodium, palladium, and osmium; and silicides of platinum, ruthenium, iridium, rhodium, palladium, and osmium. [18" id="US-20010001589-A1-CLM-00018] 18. The capacitor of claim 12 , wherein said dielectric is selected from a group consisting of Ta2O5, barium strontium titanate (“BST”), strontium titanate (“ST”), Nb2O5, Y2O3, Ba(ZrTi)O3, TiO2, ZrO2, and SrTiO3. [19" id="US-20010001589-A1-CLM-00019] 19. The capacitor of claim 12 , wherein said adhesion layer is in contact with a substrate. [20" id="US-20010001589-A1-CLM-00020] 20. The capacitor of claim 12 , wherein said adhesion layer is in contact with a material including silicon. [21" id="US-20010001589-A1-CLM-00021] 21. The capacitor of claim 20 , wherein said material including silicon is selected from a group consisting of silicon dioxide and borophosphosilicate glass. [22" id="US-20010001589-A1-CLM-00022] 22. The capacitor of claim 12 , wherein said capacitor is selected from a group consisting of a post capacitor and a trench capacitor. [23" id="US-20010001589-A1-CLM-00023] 23. A capacitor, comprising: a post; an adhesion layer in contact with said post; a first conductor in contact with said adhesion layer and having a thickness of less than six hundred Angstroms; a second conductor; and a dielectric between said first conductor and said second conductor. [24" id="US-20010001589-A1-CLM-00024] 24. A capacitor, comprising: a substrate; an adhesion layer defining an opening and in contact with said substrate; a first conductor in contact with said adhesion layer and having a thickness of less than six hundred Angstroms; a second conductor; and a dielectric between said first conductor and said second conductor. [25" id="US-20010001589-A1-CLM-00025] 25. The capacitor of claim 24 , wherein: said adhesion layer has an inside surface and an outside surface; and said first conductor is in contact with both said inside surface and said outside surface of said adhesion layer. [26" id="US-20010001589-A1-CLM-00026] 26. The capacitor of claim 24 , wherein: said adhesion layer has an inside surface and an outside surface; said first conductor is in contact with said inside surface of said adhesion layer but is not in contact with said outside surface of said adhesion layer; and said dielectric is in contact with said first conductor but is not in contact with said outside surface of said adhesion layer. [27" id="US-20010001589-A1-CLM-00027] 27. A conductive structure, comprising: a substrate; and a layer of noble metal selected from the group consisting of iridium and rhodium, said layer having a thickness of less than six hundred Angstroms and in contact with said substrate. [28" id="US-20010001589-A1-CLM-00028] 28. The structure of claim 27 , wherein said substrate includes silicon. [29" id="US-20010001589-A1-CLM-00029] 29. The structure of claim 28 , wherein said substrate is selected from a group consisting of silicon diode and borophosphosilicate glass. [30" id="US-20010001589-A1-CLM-00030] 30. A capacitor, comprising: a substrate; a layer of noble metal selected from the group consisting of iridium and rhodium, said layer having a thickness of less than six hundred Angstroms and in contact with said substrate; a conductor; and a dielectric between said layer of noble metal and said conductor. [31" id="US-20010001589-A1-CLM-00031] 31. The capacitor of claim 30 , wherein said conductor is selected from a group consisting of aluminum, titanium nitride, tantalum nitride, tungsten nitride, platinum, ruthenium, iridium, rhodium, palladium, and osmium; oxides of platinum, ruthenium, iridium, rhodium, palladium, and osmium; and silicides of platinum, ruthenium, iridium, rhodium, palladium, and osmium. [32" id="US-20010001589-A1-CLM-00032] 32. The capacitor of claim 30 , wherein said dielectric is selected from a group consisting of Ta2O5, barium strontium titanate (“BST”), strontium titanate (“ST”), Nb2O5, Y2O3, Ba(ZrTi)O3, TiO2, ZrO2, and SrTiO3. [33" id="US-20010001589-A1-CLM-00033] 33. The capacitor of claim 30 , wherein said substrate is selected from a group consisting of silicon dioxide and borophosphosilicate glass. [34" id="US-20010001589-A1-CLM-00034] 34. A capacitor, comprising: a substrate forming a post; a layer of noble metal selected from the group consisting of iridium and rhodium, said layer having a thickness of less than six hundred Angstroms and in contact with said post; a conductor; and a dielectric between said layer of noble metal and said conductor. [35" id="US-20010001589-A1-CLM-00035] 35. A capacitor, comprising: a substrate; a layer of noble metal selected from the group consisting of iridium and rhodium, said layer defining an opening, having a thickness of less than six hundred Angstroms, and in contact with said substrate; a conductor; and a dielectric between said layer of noble metal and said conductor. [36" id="US-20010001589-A1-CLM-00036] 36. The capacitor of claim 35 , wherein: said layer of noble metal has an inside surface and an outside surface; and said dielectric is in contact with both said inside surface and said outside surface of said layer of noble metal. [37" id="US-20010001589-A1-CLM-00037] 37. The capacitor of claim 35 , wherein: said layer of noble metal has an inside surface and an outside surface; and said dielectric is in contact with said inside surface of said layer of noble metal and is not in contact with said outside surface of said layer of noble metal. [38" id="US-20010001589-A1-CLM-00038] 38. A conductive structure, comprising; means for conducting electromagnetic energy having a thickness of less than six hundred Angstroms; and means for adhering said means for conducting to a substrate. [39" id="US-20010001589-A1-CLM-00039] 39. The structure of claim 38 , wherein said means for adhering is a layer selected from the group consisting of titanium, titanium alloys, noble metals, noble metal oxides, and suicides of titanium, titanium alloys, and noble metal in contact with said means for conducting. [40" id="US-20010001589-A1-CLM-00040] 40. The structure of claim 38 , wherein said means for conducting is a conductor selected from the group consisting of platinum, ruthenium, iridium, rhodium, palladium, and osmium; oxides of platinum, ruthenium, iridium, rhodium, palladium, and osmium; and silicides of platinum, ruthenium, iridium, rhodium, palladium, and osmium. [41" id="US-20010001589-A1-CLM-00041] 41. The structure of claim 38 , further comprising: second means for conducting electromagnetic energy; and means for insulating said means for conducting from said second means for conducting. [42" id="US-20010001589-A1-CLM-00042] 42. The structure of claim 41 , wherein said means for insulating is a dielectric selected from the group consisting of Ta2O5, barium strontium titanate (“BST”), strontium titanate (“ST”), Nb2O5, Y2O3, Ba(ZrTi)O3, TiO2, ZrO2, and SrTiO3 between said first and second means for conducting. [43" id="US-20010001589-A1-CLM-00043] 43. A capacitor, comprising: first means for conducting electromagnetic energy having a thickness of less than six hundred Angstroms; means for adhering said first means for conducting to a substrate; second means for conducting electromagnetic energy; and means for insulating said first means for conducting electromagnetic energy from said second means for conducting electromagnetic energy. [44" id="US-20010001589-A1-CLM-00044] 44. The capacitor of claim 43 , wherein said means for adhering is a layer selected from the group consisting of titanium, titanium alloys, noble metals, noble metal oxides, and silicides of titanium, titanium alloys, and noble metal in contact with said first means for conducting. [45" id="US-20010001589-A1-CLM-00045] 45. The capacitor of claim 43 , wherein said first means for conducting is a conductor selected from the group consisting of platinum, ruthenium, iridium, rhodium, palladium, and osmium; oxides of platinum, ruthenium, iridium, rhodium, palladium, and osmium; and silicides of platinum, ruthenium, iridium, rhodium, palladium, and osmium. [46" id="US-20010001589-A1-CLM-00046] 46. The capacitor of claim 43 , wherein said means insulating is a dielectric selected from the group consisting of Ta2O5, barium strontium titanate (“BST”), strontium titanate (“ST”), Nb2O5, Y2O3, Ba(ZrTi)O3, TiO2, ZrO2, and SrTiO3 between said first and second means for conducting. [47" id="US-20010001589-A1-CLM-00047] 47. A system, comprising: a bus; a first device connected to said bus, said first device including a conductive structure, said conductive structure having an adhesion layer and a conductor in contact with said adhesion layer, said conductor having a thickness of less than six hundred Angstroms; and a second device connected to said bus. [48" id="US-20010001589-A1-CLM-00048] 48. The system of claim 47 , wherein said second device includes a second conductive structure, said second conductive structure having a second adhesion layer and a second conductor in contact with said second adhesion layer, said second conductor having a thickness of less than six hundred Angstroms. [49" id="US-20010001589-A1-CLM-00049] 49. The system of claim 47 , wherein said first device is a processor. [50" id="US-20010001589-A1-CLM-00050] 50. The system of claim 47 , wherein said first device is a memory.
类似技术:
公开号 | 公开日 | 专利标题 US7214602B2|2007-05-08|Method of forming a conductive structure US6537912B1|2003-03-25|Method of forming an encapsulated conductive pillar US6259128B1|2001-07-10|Metal-insulator-metal capacitor for copper damascene process and method of forming the same US6320213B1|2001-11-20|Diffusion barriers between noble metal electrodes and metallization layers, and integrated circuit and semiconductor devices comprising same US5581436A|1996-12-03|High-dielectric-constant material electrodes comprising thin platinum layers JP2007515775A|2007-06-14|Semiconductor device and manufacturing method thereof JP3495955B2|2004-02-09|Semiconductor memory device and method of manufacturing the same US6261950B1|2001-07-17|Self-aligned metal caps for interlevel metal connections KR100269310B1|2000-10-16|Semiconductor device using conductive diffusion barrier layer KR100235949B1|1999-12-15|Manufacturing method of capacitor of semiconductor device US5688718A|1997-11-18|Method of CVD TiN barrier layer integration US6919257B2|2005-07-19|Method of forming a capacitor US7157761B2|2007-01-02|Capacitor with noble metal pattern US20040147088A1|2004-07-29|Capacitor JP2001036024A|2001-02-09|Capacitor and manufacture thereof KR19980065687A|1998-10-15|Manufacturing method of capacitor JPH1154703A|1999-02-26|Manufacture of high dielectric capacitor US6756260B2|2004-06-29|Method for manufacturing semiconductor device using seed conductive layers JPH08236719A|1996-09-13|Platinum thin film and semiconductor device, and method of their fabrication KR100646947B1|2006-11-17|Method of manufacturing a capacitor in a semiconductor device KR100447253B1|2004-09-07|A method for forming a inter-layer oxide of a semiconductor device JPH09223777A|1997-08-26|Platinum thin film, semiconductor device and its manufacture KR19990004571A|1999-01-15|Capacitor Manufacturing Method of Semiconductor Device
同族专利:
公开号 | 公开日 US20020154468A1|2002-10-24| US20070263340A1|2007-11-15| US7214602B2|2007-05-08| US6569689B2|2003-05-27| US20030174458A1|2003-09-18| US20040212090A1|2004-10-28| US6421223B2|2002-07-16| US6757153B2|2004-06-29| US8593784B2|2013-11-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US6720603B2|2000-08-21|2004-04-13|Hitachi, Ltd.|Capacitor structure and a semiconductor device with a first metal layer, a second metal silicide layer formed over the first metal layer and a second metal layer formed over the second metal silicide layer| EP1353370A3|2002-03-28|2009-09-16|Panasonic Corporation|Semiconductor memory capacitor and method for fabricating the same| US20110097589A1|2009-10-28|2011-04-28|General Electric Company|Article for high temperature service|JPH0319710B2|1980-12-26|1991-03-15|Fujitsu Ltd|| US5723171A|1992-10-23|1998-03-03|Symetrix Corporation|Integrated circuit electrode structure and process for fabricating same| US5005102A|1989-06-20|1991-04-02|Ramtron Corporation|Multilayer electrodes for integrated circuit capacitors| US5003428A|1989-07-17|1991-03-26|National Semiconductor Corporation|Electrodes for ceramic oxide capacitors| DE69017802T2|1989-08-30|1995-09-07|Nec Corp|Thin film capacitor and its manufacturing process.| JPH0687493B2|1990-03-07|1994-11-02|日本電気株式会社|Thin film capacitors| NL9000602A|1990-03-16|1991-10-16|Philips Nv|METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE WITH MEMORY ELEMENTS FORMING CAPACITORS WITH A FERROELECTRIC DIELECTRIC.| DE69333864T2|1992-06-12|2006-06-29|Matsushita Electric Industrial Co., Ltd., Kadoma|Manufacturing method for semiconductor device with capacitor| US5539612A|1992-09-08|1996-07-23|Texas Instruments Incorporated|Intermediate structure for forming a storage capacitor| US5407855A|1993-06-07|1995-04-18|Motorola, Inc.|Process for forming a semiconductor device having a reducing/oxidizing conductive material| JPH07235612A|1994-02-23|1995-09-05|Mitsubishi Electric Corp|Memory cell structure of semiconductor device| US5418180A|1994-06-14|1995-05-23|Micron Semiconductor, Inc.|Process for fabricating storage capacitor structures using CVD tin on hemispherical grain silicon| JP2956482B2|1994-07-29|1999-10-04|日本電気株式会社|Semiconductor memory device and method of manufacturing the same| US5589284A|1994-08-01|1996-12-31|Texas Instruments Incorporated|Electrodes comprising conductive perovskite-seed layers for perovskite dielectrics| US5566045A|1994-08-01|1996-10-15|Texas Instruments, Inc.|High-dielectric-constant material electrodes comprising thin platinum layers| US5691219A|1994-09-17|1997-11-25|Kabushiki Kaisha Toshiba|Method of manufacturing a semiconductor memory device| US5497017A|1995-01-26|1996-03-05|Micron Technology, Inc.|Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors| JP3683972B2|1995-03-22|2005-08-17|三菱電機株式会社|Semiconductor device| JPH0945872A|1995-07-28|1997-02-14|Olympus Optical Co Ltd|Dielectric thin film element| US5937294A|1995-08-11|1999-08-10|Micron Technology, Inc.|Method for making a container capacitor with increased surface area| US5889299A|1996-02-22|1999-03-30|Kabushiki Kaisha Toshiba|Thin film capacitor| US5825609A|1996-04-23|1998-10-20|International Business Machines Corporation|Compound electrode stack capacitor| FI104563B|1996-05-17|2000-02-29|Xyrofin Oy|Method and carrier for the production of isomaltulose by immobilized microorganisms| JPH10173140A|1996-12-11|1998-06-26|Texas Instr Japan Ltd|Manufacture of ferroelectric capacitor and manufacture of ferroelectric memory device| JPH10242426A|1996-12-26|1998-09-11|Sony Corp|Capacitor structure of semiconductor memory cell and its manufacture| JP3466851B2|1997-01-20|2003-11-17|株式会社東芝|Semiconductor device and manufacturing method thereof| DE19705352A1|1997-02-12|1998-08-20|Siemens Ag|Manufacturing process for a raised capacitor electrode| US5926716A|1997-03-31|1999-07-20|Siemens Aktiengesellschaft|Method for forming a structure| US6153490A|1997-07-01|2000-11-28|Texas Instruments Incorporated|Method for forming integrated circuit capacitor and memory| US6218297B1|1998-09-03|2001-04-17|Micron Technology, Inc.|Patterning conductive metal layers and methods using same| US6284655B1|1998-09-03|2001-09-04|Micron Technology, Inc.|Method for producing low carbon/oxygen conductive layers| US6037235A|1998-09-14|2000-03-14|Applied Materials, Inc.|Hydrogen anneal for curing defects of silicon/nitride interfaces of semiconductor devices| US6207524B1|1998-09-29|2001-03-27|Siemens Aktiengesellschaft|Memory cell with a stacked capacitor| US6204203B1|1998-10-14|2001-03-20|Applied Materials, Inc.|Post deposition treatment of dielectric films for interface control| US6100200A|1998-12-21|2000-08-08|Advanced Technology Materials, Inc.|Sputtering process for the conformal deposition of a metallization or insulating layer| WO2000049660A1|1999-02-16|2000-08-24|Symetrix Corporation|Iridium oxide diffusion barrier between local interconnect layer and thin film of layered superlattice material| US6421223B2|1999-03-01|2002-07-16|Micron Technology, Inc.|Thin film structure that may be used with an adhesion layer|US6414585B1|1997-05-13|2002-07-02|Chipscale, Inc.|Integrated passive components and package with posts| US6421223B2|1999-03-01|2002-07-16|Micron Technology, Inc.|Thin film structure that may be used with an adhesion layer| US6818545B2|2001-03-05|2004-11-16|Megic Corporation|Low fabrication cost, fine pitch and high reliability solder bump| JP3894554B2|2002-08-07|2007-03-22|松下電器産業株式会社|Capacitor element and manufacturing method thereof| US6884691B2|2003-03-18|2005-04-26|Micron Technology, Inc.|Method of forming a substrate having a surface comprising at least one of Pt, Pd, Co and Au in at least one of elemental and alloy forms| KR100505680B1|2003-03-27|2005-08-03|삼성전자주식회사|Method for manufacturing semiconductor memory device having ruthenium film and apparatus for manufacturing the ruthenium film| US7842581B2|2003-03-27|2010-11-30|Samsung Electronics Co., Ltd.|Methods of forming metal layers using oxygen gas as a reaction source and methods of fabricating capacitors using such metal layers| US6737313B1|2003-04-16|2004-05-18|Micron Technology, Inc.|Surface treatment of an oxide layer to enhance adhesion of a ruthenium metal layer| KR100534100B1|2003-12-15|2005-12-06|삼성전자주식회사|Methods of fabricating a semiconductor device by exposing upper sidewall of contact plug to form a charge storage electrode| KR100601953B1|2004-05-03|2006-07-14|삼성전자주식회사|Capacitor of memory device and fabrication method thereof| US7312120B2|2004-09-01|2007-12-25|Micron Technology, Inc.|Method for obtaining extreme selectivity of metal nitrides and metal oxides| US7329576B2|2004-09-02|2008-02-12|Micron Technology, Inc.|Double-sided container capacitors using a sacrificial layer| KR100558036B1|2004-12-28|2006-03-07|주식회사 하이닉스반도체|Method for manufacturing semiconductor memory device| WO2006103779A1|2005-03-30|2006-10-05|Fujitsu Limited|Semiconductor device and its manufacturing method| KR100970156B1|2005-12-08|2010-07-14|후지쯔 세미컨덕터 가부시키가이샤|Semiconductor device| US8385047B2|2006-03-31|2013-02-26|University Of Florida Research Foundation, Inc.|Integrated power passives| US8057883B2|2007-05-30|2011-11-15|Kemet Electronics Corporation|Abrasive process for modifying corners, edges, and surfaces of capacitor anode bodies| US8344438B2|2008-01-31|2013-01-01|Qimonda Ag|Electrode of an integrated circuit| US8679970B2|2008-05-21|2014-03-25|International Business Machines Corporation|Structure and process for conductive contact integration| US8753933B2|2008-11-19|2014-06-17|Micron Technology, Inc.|Methods for forming a conductive material, methods for selectively forming a conductive material, methods for forming platinum, and methods for forming conductive structures| US8003521B2|2009-04-07|2011-08-23|Micron Technology, Inc.|Semiconductor processing| US20100276764A1|2009-05-04|2010-11-04|Yi-Jen Lo|Semiconductor structure with selectively deposited tungsten film and method for making the same| US8610280B2|2011-09-16|2013-12-17|Micron Technology, Inc.|Platinum-containing constructions, and methods of forming platinum-containing constructions|
法律状态:
1999-03-01| AS| Assignment|Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARSH, EUGENE P.;REEL/FRAME:009811/0254 Effective date: 19990218 | 2002-06-27| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2003-01-28| CC| Certificate of correction| 2005-12-27| FPAY| Fee payment|Year of fee payment: 4 | 2009-12-16| FPAY| Fee payment|Year of fee payment: 8 | 2010-01-04| AS| Assignment|Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 | 2013-12-18| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US09/259,209|US6421223B2|1999-03-01|1999-03-01|Thin film structure that may be used with an adhesion layer|US09/259,209| US6421223B2|1999-03-01|1999-03-01|Thin film structure that may be used with an adhesion layer| US10/157,376| US6569689B2|1999-03-01|2002-05-29|Method of forming a capacitor| US10/413,750| US6757153B2|1999-03-01|2003-04-15|Thin film structure that may be used with an adhesion layer| US10/848,321| US7214602B2|1999-03-01|2004-05-18|Method of forming a conductive structure| US11/799,360| US8593784B2|1999-03-01|2007-05-01|Thin film structure that may be used with an adhesion layer| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|